12 research outputs found

    Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology

    Get PDF
    The detection and attribution of long-term patterns in hydrological time series have been important research topics for decades. A significant portion of the literature regards such patterns as ‘deterministic components’ or ‘trends’ even though the complexity of hydrological systems does not allow easy deterministic explanations and attributions. Consequently, trend estimation techniques have been developed to make and justify statements about tendencies in the historical data, which are often used to predict future events. Testing trend hypothesis on observed time series is widespread in the hydro-meteorological literature mainly due to the interest in detecting consequences of human activities on the hydrological cycle. This analysis usually relies on the application of some null hypothesis significance tests (NHSTs) for slowly-varying and/or abrupt changes, such as Mann-Kendall, Pettitt, or similar, to summary statistics of hydrological time series (e.g., annual averages, maxima, minima, etc.). However, the reliability of this application has seldom been explored in detail. This paper discusses misuse, misinterpretation, and logical flaws of NHST for trends in the analysis of hydrological data from three different points of view: historic-logical, semantic-epistemological, and practical. Based on a review of NHST rationale, and basic statistical definitions of stationarity, nonstationarity, and ergodicity, we show that even if the empirical estimation of trends in hydrological time series is always feasible from a numerical point of view, it is uninformative and does not allow the inference of nonstationarity without assuming a priori additional information on the underlying stochastic process, according to deductive reasoning. This prevents the use of trend NHST outcomes to support nonstationary frequency analysis and modeling. We also show that the correlation structures characterizing hydrological time series might easily be underestimated, further compromising the attempt to draw conclusions about trends spanning the period of records. Moreover, even though adjusting procedures accounting for correlation have been developed, some of them are insufficient or are applied only to some tests, while some others are theoretically flawed but still widely applied. In particular, using 250 unimpacted stream flow time series across the conterminous United States (CONUS), we show that the test results can dramatically change if the sequences of annual values are reproduced starting from daily stream flow records, whose larger sizes enable a more reliable assessment of the correlation structures

    Flood Risk Management In Small Urban River Using A Sustainable Urban Drainage System: Wortley Beck, Leeds, Uk

    Full text link
    In the UK, urban river basins are particularly vulnerable to flash floods due to short and intense rainfall. This paper presents potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the Leeds city centre. The reach of Wortley Beck is approximately 6km long with contributing catchment area of 30km2 that drain into the River Aire. Lower Wortley has experienced regular flooding over the last few years from a range of sources, including Wortley Beck and surface and ground water, that affects properties both upstream and downstream of Farnley Lake as well as Wortley Ring Road. This has serious implications for society, the environment and economy activity in the City of Leeds. The first stage of the study involves systematically incorporating Wortley Beck’s land scape features on an Arc-GIS platform to identify existing green features in the region. This process also enables the exploration of potential blue green features: green spaces, green roofs, water retention ponds and swales at appropriate locations and connect them with existing green corridors to maximize their productivity. The next stage is involved in developing a detailed 2D urban flood inundation model for the Wortley Beck region using the CityCat model. CityCat is capable to model the effects of permeable/impermeable ground surfaces and buildings/roofs to generate flood depth and velocity maps at 1m caused by design storm events. The final stage of the study is involved in simulation of range of rainfall and flood event scenarios through CityCat model with different blue green features. Installation of other hard engineering individual property protection measures through water butts and flood walls are also incorporated in the CityCat model. This enables an integrated sustainable flood resilience strategy for this region

    Cooling water for Britain's future electricity supply

    No full text
    Trends in the locations and technologies of UK electricity generation plant suggest that demand for cooling water abstractions from rivers will decrease in the coming decades, unless there is widespread uptake of carbon dioxide capture and storage (CCS). CCS may prove to be essential if the UK is to achieve its carbon dioxide and greenhouse gas emission targets. ‘Decarbonisation’ strategies that rely on CCS are therefore potentially at risk of not having sufficient cooling water in periods of low river flows. In this paper, regional freshwater demands for cooling water are assessed against regional freshwater availability at low flows in a scenario of medium climate change. In the strategy with high CCS, demands for water greatly exceed current and future availability in the north-west (NW) England, Humber, East (E) Midlands and Thames regions. These risks can be mitigated by increasing the penetration of hybrid cooling systems or shifting generating capacity to estuaries or the coast. The former could reduce national water use by up to 35%, whereas applying the latter in the NW England, Humber and E Midlands regions offers nationwide reductions from 30 to 50%

    Assessing the long-term performance of cross-sectoral strategies for national infrastructure

    No full text
    National infrastructure systems (energy, transport, digital communications, water, and waste) provide essential services to society. Although for the most part these systems developed in a piecemeal way, they are now an integrated and highly interdependent “system of systems.” However, understanding the long-term performance trajectory of national infrastructure has proved to be very difficult because of the complexity of these systems (in physical and institutional terms) and because there is little tradition of thinking cross-sectorally about infrastructure system performance. Here, a methodology is proposed for analyzing national multisectoral infrastructure systems performance in the context of uncertain futures, incorporating interdependencies in demand across sectors. Three contrasting strategies are considered for infrastructure provision (capacity intensive, capacity constrained, and decentralized) and multiattribute performance metrics are analyzed in the context of low, medium, and high demographic and economic growth scenarios. The approach is illustrated using Great Britain and provides the basis for the development and testing of long-term strategies for national infrastructure provision. It is especially applicable to mature industrial economics with a large stock of existing infrastructure and challenges of future infrastructure provision
    corecore